I I I I I I I I I I I I I I I I I I I		

7-3 Day 2 Volumes: Washers Method

Learning Targets

I find the volume of a solid that has been rotated around an axis using the washer method.

Ex1. The region in the first quadrant enclosed by the graphs of $f(x) = 4\sin\left(\frac{x}{2}\right)$ and $g(x) = \frac{x}{2}$ is revolved around the x-axis to form a solid. Find the volume.

$$\int_{0}^{4.9491} \left((4\sin(\frac{x}{8}))^{2} - (\frac{x}{8})^{2} \right) dx$$

$$= 117.081 \text{ units}^{3}$$

Ex2. The region in the first quadrant enclosed by the y-axis and the graphs of $y = \cos x$ and y = x is revolved around the x-axis to form a solid. Find the volume.

 $\int_{0}^{\pi} \frac{73909}{\pi} \left((\cos x)^{2} - x^{2} \right) dx$

1.520

Ex3. Let R be the shaded region bounded by the graph of $y = \ln x$ and the line y = x - 2 as shown.

a.) Find the area of R.

b.) Find the volume of the solid when R rotated around the horizontal line y = -3.

 $\int_{.158594}^{3.1461932} TT \left((3+lnx)^2 - (x+l)^2 \right) dx^{2} = x+1$

c.) Find the volume of the solid when R is rotated around the y-axis. y = knx y = x - 2

$$x = y + a$$

$$\int_{-1.8414}^{1.1462} (y + a)^{2} - (e^{y})^{3} dy$$

$$= 17.099 \text{ units}^{3}$$

p. 406 #15-20, 25